
Practical Reverse Engineering using Radare2
Sanoop Thomas

@s4n7h0

1
Saturday, February 18, 2017

Instructor Briefing (2min)
 Sanoop Thomas

◦ I write technical contents at devilslab.in

◦ Former chapter moderator at Null Mumbai

◦ Currently core team & chapter moderator at Null Singapore

◦ Author of Halcyon IDE halcyon-ide.org

◦ Presented at Nullcon, OWASP India, BlackHat Arsenal, HITBGSEC, ROOTCON

◦ Learned from community, so time to give it back.

◦ I tweet at @s4n7h0

2
Saturday, February 18, 2017

http://devilslab.in/
http://halcyon-ide.org/

Participants Briefing (10min)
 Name and background

 How long are you attending with nullsg or other null chapters

 What do you do in Information Security

 Your experience specifically in programming, assembly and reverse engineering

 Your expectation from this workshop

Saturday, February 18, 2017
3

Agenda
 Introduction to Radare2

 Reverse Engineering for Beginners – A Crash Course

 Binary Analysis

 Binary Diffing

 Binary Patching

 Shellcode Analysis

 Lab exercises at different levels.

 This workshop materials will be updated here
◦ https://github.com/s4n7h0/Practical-Reverse-Engineering-using-Radare2

4
Saturday, February 18, 2017

https://github.com/s4n7h0/Practical-Reverse-Engineering-using-Radare2

#protips
 These thoughts are perfectly fine

 “I have no idea what to do next.”

 “Oops! I made wrong assumptions.”

 “aaggrrhh, it’s taking too much time.”

5
Saturday, February 18, 2017

6
Saturday, February 18, 2017

Setup
 Use Git

◦ git clone https://github.com/radare/radare2.git

◦ sys/install.sh

 New stable releases are published at http://bin.rada.re/

Saturday, February 18, 2017
7

https://github.com/radare/radare2.git
http://bin.rada.re/

Radare2
 Started as single person project in early 2006.

 Raw Data Recovery – started as a hexeditor with disc search and data recovery features.

 Today it supports more features – disassembler, debugging, graphing, scripting etc.,

 Radare2 is focused on portability and thus it supports a lot of architectures

 Applies *nix theory – “everything is a file”. Meaning, possibly everything can be reversed.

8
Saturday, February 18, 2017

Recognized file formats
 COFF and derivatives, including

Win32/64/generic PE

 ELF and derivatives

 Mach-O (Mach) and derivatives

 Game Boy and Game Boy Advance
cartridges

 MZ (MS-DOS)

 Java class

 dyld cache dump[19]

 Dex (Dalvik EXecutable)

 Xbox xbe format[20]

 Plan9 binaries

 Winrar virtual machine[21]

 File system like the ext family, ReiserFS,
HFS+, NTFS, FAT, ...

 DWARF and PDB file formats for storing
additional debug information

 Raw binary

Saturday, February 18, 2017
9

https://en.wikipedia.org/wiki/Radare2

Instruction sets
 Intel x86 family

 ARM architecture

 Atmel AVR series

 Brainfuck

 Motorola 68k and H8

 Ricoh 5A22

 MOS 6502

 Smartcard PSOS Virtual Machine

 Java virtual machine

 MIPS:
mipsb/mipsl/mipsr/mipsrl/r5900b/r5900l

 PowerPC

 SPARC Family

 TMS320Cxxx series

 Argonaut RISC Core

 Intel 51 series:
8051/80251b/80251s/80930b/80930s

 Zilog Z80

 CR16

 Cambridge Silicon Radio (CSR)

 AndroidVM Dalvik

 DCPU-16

 EFI bytecode

Saturday, February 18, 2017
10

 Gameboy (z80-like)

 Java Bytecode

 Malebolge

 MSIL/CIL

 Nios II

 SuperH

 Spc700

 Systemz

 TMS320

 V850

 Whitespace

 XCore

https://en.wikipedia.org/wiki/Radare2

Utilities
Rax2 Used for calculating and conversion

Rabin2 Used for extracting and analysing binary information.

Rasam2 Used for command line assembler and disassembler

Rahash2 An implementation of a block-based hash tool.

Radiff2 A binary diffing utility.

Rafind2 Used to find byte patterns in files.

Ragg2 Used for generating or compiling shellcodes.

Rarun2 Used for running programs within different environments, different settings etc.

Radare2 The core hex editor, debugger and more

R2 Same as radare2

Saturday, February 18, 2017
11

Rax2
 rax2 10

◦ 0xa

 rax2 0xa
◦ 10

 rax2 -s 4141
◦ AA

 rax2 -S AA
◦ 4141

 rax2 -b 01000001
◦ A

 rax2 -B A
◦ 01000001

Saturday, February 18, 2017
12

 rax2 0x33+3
◦ 54

 rax2 -k 0x33+3
◦ 0x36

 rax2 -n 0x1234
◦ 34120000

 rax2 -N 0x1234
◦ \x34\x12\x00\x00

 rax2 -r 0x1234
◦ Try this

 rax2 -E something
◦ Try this

 Rax2 can be used inside radare2 console
◦ ? 0x80+3

 See help for more options
◦ rax2 -h

Rabin2
-A Architecture

-e Entry Point

-g Shows all possible information

-i Import List

-I Binary Information

-j Print result in JSON format

-K Calculate checksum on sections

-l Linked libraries

-m Show source line at address

Saturday, February 18, 2017
13

-M Shows source line of main

-n show section, symbol or import named str

-q Quiet mode output

-s Shows symbols

-S Shows sections

-V Shows binary version

-z Displays strings

-Z Shows size of binary

 Example:
◦ rabin2 -Ieqqzzj /bin/true

Binary Analysis
 Use lab0 to experiment with the following analysis

◦ Get the binary information

◦ Get the architecture and entry point together

◦ Get the strings in normal and quiet mode

Saturday, February 18, 2017
14

Rasm2
 rasm2 -a x86 -b 32 'mov eax, 0xA' -C

◦ "\xb8\x0a\x00\x00\x00“

 rasm2 -d 90
◦ nop

 rasm2 nop
◦ 90

 rasm2 -f lessons/hello.asm
◦ b83c0000000f05

 rasm2 -d b83c0000000f05
◦ mov eax, 0x3c

◦ syscall

Saturday, February 18, 2017
15

Rahash2
 rahash2 -a all binary_file

◦ Computes all hashes for whole binary

 rahash2 -a sha1 binary_file
◦ Computes SHA1 for binary

 rahash2 -a entropy binary_file
◦ Computes entropy for binary

 rahash2 -B -b 512 -a md5 binary_file
◦ Computes MD5 for all 512 blocks in the binary

 rahash2 -B -b 512 -a entropy binary_file
◦ Computes entropy for all 512 blocks in the binary

Saturday, February 18, 2017
16

Classic “crackme”
 Analyse lab1 binary

 Identify exploit protection flags

 Calculate entropy for each 512 bytes block

 Find the password

Saturday, February 18, 2017
17

Radiff2
 To compute the distance and similarity

◦ radiff2 -s /bin/true /bin/false

 To count the difference
◦ radiff2 -c /bin/true /bin/false

 To analyze and check matching functions
◦ radiff2 -AC /bin/true /bin/false

 Graph-diffing
◦ radiff2 -g main /bin/true /bin/false

Saturday, February 18, 2017
18

Image source: radare.gitbooks.io

Rafind2
 Show hexdump of string search hits

◦ rafind2 -X -s findme example.bin

 Show hexdump of hex search hits
◦ rafind2 -X -x ffff example.bin

 Show strings of string search hits
◦ rafind2 -Z -s Congrats lesson1

 Show strings of hex search hits
◦ rafind2 -Z -x 4e6f lesson1

Saturday, February 18, 2017
19

Ragg2
$ cat hello.r

/* hello world in r_egg */

write@syscall(4);

exit@syscall(1);

main@global(128) {

.var0 = "helloworld!";

write(1,.var0, 12);

exit(0);

}

$ ragg2 -O -F hello.r

$./hello

helloworld!

 Padding with 80 “A”s
◦ ragg2 -p A80 -r

 Padding with a specific double word
◦ ragg2 -p A80 -d 76:0x32323232 -r

 Generate a shell code
◦ ragg2 -i exec

 Generate x86 32bit shell code in C format
◦ ragg2 -a x86 -b 32 -i exec -z

Saturday, February 18, 2017
20

Rarun2
 #!/usr/bin/rarun2

program=./binary

arg1=first_argument

stdin=foobar.txt

chdir=/tmp

#chroot=.

 rarun2 program=binary arg1=first_argument

 For example,
◦ nc -l 9999

◦ rarun2 program=/bin/ls connect=localhost:9999

Saturday, February 18, 2017
21

Radare2/R2
 Debugging mode (-d)

 Seek (s)

 Analyse (a)

 Search (/?)

 Print (p)

 Write (w)

 Visualise mode (v)

 Switch print mode (p/P)

 Navigate through symbols/objects (n/N)

 Seek to (o)

 Move (hjkl)

 Undo (u)

Saturday, February 18, 2017
22

Correct Password
 Analyse lab2 binary

 Find string patterns in the binary

 Analyse the program flow, graph (use r2)

 Crack the program using correct password

Saturday, February 18, 2017
23

Always “good code”
 Analyse lab3 binary

 Fetch binary protection flags in r2 console

 Analyse the program flow, graph (use r2)

 Patch the program as lab3_patch to print always good code

 Do binary diff for original and patch files

Saturday, February 18, 2017
24

Deactivate HAL
 Analyse lab4 binary

 Control the program to deactivate HAL

 Create lab4_patch and also diff

Saturday, February 18, 2017
25

Shellcode Analysis
 Analyse the lab5 binary

 Find the shellcode

 Identify what shellcode can do

Saturday, February 18, 2017
26

Radare2 Web UI

Saturday, February 18, 2017
27

Bokken

Saturday, February 18, 2017
28

References
 http://rada.re/

 http://radare.today/

 https://radare.gitbooks.io/radare2book/content/introduction/intro.html

 https://github.com/pwntester/cheatsheets/blob/master/radare2.md

Saturday, February 18, 2017
29

https://radare.gitbooks.io/radare2book/content/introduction/intro.html
https://radare.gitbooks.io/radare2book/content/introduction/intro.html
https://radare.gitbooks.io/radare2book/content/introduction/intro.html
https://github.com/pwntester/cheatsheets/blob/master/radare2.md

